
Rust Declarative Macro Improvements: A Step
forward for the Rust macros usability
Today we'll explore the most significant improvement to Rust's macro system since 1.0 - the extension of declarative macros to support
attributes and derives. This isn't just about making macro writing easier; it's about removing one of the biggest obstacles to Rust adoption in
systems programming, particularly for Rust for Linux development.

Author: Vincenzo Palazzo vincenzopalazzodev@gmail.com

Co-Leading wg-macros on the rust compiler

https://vincenzopalazzodev@gmail.com/

The Current Reality
If you want to create a custom derive macro or attribute macro in Rust today, you must write a procedural macro. There's no way around it.

Separate Crate Required
Every proc macro needs its own
compilation unit with special
configuration

Heavy Dependencies
syn (25,000 lines), quote (5,000 lines),
proc-macro2 (15,000 lines)

Build Time Impact
Proc macros make incremental rebuilds
slower

Kernel Development Pain Points

In kernel space, procedural macros create unique challenges that break traditional development workflows.

01

Dependency Explosion
45,000 lines of parsing code just to use a
derive macro. Every line increases attack
surface and requires security review.

02

Build Time Regression
 Kernel developers depending on how you
build them.

03

Maintenance Overhead
Separate macro crates complicate build
systems, review processes, and ongoing
maintenance for simple modules.

A Concrete Example: module! Macro

In Rust for Linux, every kernel module requires this macro. Currently implemented as a procedural macro, it forces every compilation to build
syn, quote, and proc-macro2 first.

module! {

 type: MyModule,
 name: "my_kernel_module",
 license: "GPL",
}

This simple macro generates module initialisation code but requires attribute-like behaviour. The result? Massive compilation overhead for
basic functionality that has nothing to do with the kernel itself.

But macro_rules! Are Actually Brilliant
What They Do Well

Compile quickly with minimal overhead

Excellent hygiene with $crate mechanism - it prevents name
conflicts and ensures macros work correctly across crate
boundaries.

Can define and use a macro in the same crate. No separate crate
required.

Battle-tested reliability and performance

The Only Problem
They've been limited to function-like macros (mac!(...)). No derives, no
attributes, no way to replace procedural macros for the most
common use cases.

Until now.

Three RFCs Change
Everything

1

RFC 3697
Attribute macro support with attr() rule
syntax

2

RFC 3698
Derive macro support with derive() rule
syntax

3

RFC 3715
Safety marking for unsafe macros
requiring explicit acknowledgement

These aren't theoretical proposals. The first two are already implemented in nightly Rust and available for testing today.

RFC 3697: Declarative Attribute Macros

Implementation https://github.com/rust-lang/rfcs/pull/3697 by Josh Triplett

Approved and merged in August 2025, this RFC introduces the ability to write attribute macros using macro_rules! through the new attr() rule
syntax.

macro_rules! main {
 attr() ($func:item) => {

 make_async_main!($func)
 };
 attr(threads = $threads:literal) ($func:item) => {
 make_async_main!($threads, $func)
 };
}

Notice the structure: attr() matches attribute arguments, followed by parentheses matching what the attribute applies to. Completely backwards
compatible with existing function-like macro calls.

https://github.com/rust-lang/rfcs/pull/3697
https://github.com/joshtriplett

Attribute Syntax in Action

#[main]
async fn main() {
 // Your async code here
}

Simple Usage

#[main(threads = 4)]
async fn main() {
 // Runs with 4 threads
}

With Arguments

The brilliance lies in the backwards compatibility. Add attr rules to existing macros without breaking anything. Function-like calls still work;
attribute usage is now possible too.

Complex Attribute Example: Benchmarking

Here's a practical example that would have required a full procedural macro before:

macro_rules! bench {

 attr() ($func:item) => {
 #[cfg(test)]
 mod bench {
 use super::*;

 $func

 #[test]
 fn benchmark() {
 let start = std::time::Instant::now();
 // Call the function multiple times

 println!("Benchmark took: {:?}", start.elapsed());
 }
 }
 };
}

#[bench]

fn foo() {
 /* Compute-intensive code here */
}

Now it's just a few lines of declarative macro code. No syn, no quote, no separate crate. Compiles instantly with full hygiene support.

RFC 3698: Declarative Derive Macros

Implementation hhttps://github.com/rust-lang/rfcs/pull/3698 by Josh Triplett

Equally revolutionary, this RFC introduces derive() rule syntax for implementing derive macros with macro_rules!.

#![feature(macro_derive)]
macro_rules! Answer {
 derive() (struct $name:ident $_:tt) => {

 impl Answer for $name {
 fn answer(&self) -> u32 { 43 }
 }
 };

 derive() (enum $name:ident $_:tt) => {
 impl Answer for $name {
 fn answer(&self) -> u32 { /* ... */ }
 }
 };
}

https://github.com/rust-lang/rfcs/pull/3697
https://github.com/rust-lang/rfcs/pull/3698
https://github.com/joshtriplett

Derive Usage and Conventions

#[derive(Answer)]
struct MyStruct;

#[derive(Answer)]
enum MyEnum {
 A, B, C
}

Standard Syntax Key Insight
The macro has the same name as the trait. When you write #
[derive(Answer)], it looks for a macro named Answer with derive()
rules.

Follows established Rust conventions whilst maintaining tool
compatibility.

Playground code: https://play.rust-lang.org/?
version=nightly&mode=debug&edition=2024&gist=04910934860c1b535513c2d2c50a1433

https://play.rust-lang.org/?version=nightly&mode=debug&edition=2024&gist=04910934860c1b535513c2d2c50a1433
https://play.rust-lang.org/?version=nightly&mode=debug&edition=2024&gist=04910934860c1b535513c2d2c50a1433

RFC 3715: Unsafe Derives and Attributes

Implementation hhttps://github.com/rust-lang/rfcs/pull/3715h by Josh Triplett

Some derives and attributes can cause undefined behaviour if used incorrectly. This RFC introduces explicit safety marking for potentially
dangerous macros.

macro_rules! FromBytes {

 unsafe derive() ($item:item) => {
 // Implementation assumes no padding
 };
}

#[derive(unsafe(FromBytes))]
#[repr(C)]
struct PackedData {
 a: u32,
 b: u32,

}

Unsafe Derive

macro_rules! no_mangle_export {

 unsafe attr() ($func:item) => {
 #[no_mangle]
 pub unsafe extern "C" $func
 };
}

#[unsafe(no_mangle_export)]
fn my_function() { /* ... */ }

Unsafe Attribute

https://github.com/rust-lang/rfcs/pull/3697
https://github.com/rust-lang/rfcs/pull/3715
https://github.com/rust-lang/rfcs/pull/3698
https://github.com/joshtriplett

Final Reasons

Some traits place requirements on implementations that the Rust compiler cannot verify. Those traits can mark themselves as unsafe,
requiring unsafe impl syntax to implement. However, trait derive macros cannot currently require unsafe.

This brings macro safety in line with Rust's other safety mechanisms. The RFC is approved but not yet implemented; when it lands, it will
complete the safety story for declarative macros.

RFC 3715 status: Not yet approved. Need feedback from potential users on use cases

Current Limitations and Roadmap

1

Parsing Flexibility
Declarative macros can't parse Rust
syntax as flexibly as procedural macros.
Complex generic bounds may struggle
where syn succeeds.

2

The 80/20 Rule
Most macros don't need that flexibility.
80% of derive and attribute macros do
simple transformations that declarative
macros handle perfectly.

3

Fragment Fields (RFC 3714)
Under evaluation feature will allow
accessing parsed components like
$field.name and $field.type, closing
remaining gaps.

Future Fragment Fields Syntax

Proposal https://github.com/rust-lang/rfcs/pull/3714 by Josh Triplett

RFC 3714 will enable much more sophisticated field manipulation:

macro_rules! get_name {
 ($t:adt) => { stringify!(${t.name}) }
}

fn main() {
 let n1 = get_name!(struct S { field: u32 });
 let n2 = get_name!(enum E { V1, V2 = 42, V3(u8) });
 let n3 = get_name!(union U { u: u32, f: f32 });
 println!("{n3}{n1}{n2}"); // prints "USE"

}

12024
Answering to the question if it is easy to implement these

things in rust internal

2 2025 Q2
Make some experiment around the compiler

32025 Q4
See how people will use these features and pay attention to

the concern that Josh highlights on the
https://github.com/rust-

lang/rfcs/blob/master/text/3697-declarative-
attribute-macros.md#drawbacks

https://github.com/rust-lang/rfcs/pull/3714
https://github.com/joshtriplett
https://github.com/rust-lang/rfcs/blob/master/text/3697-declarative-attribute-macros.md#drawbacks
https://github.com/rust-lang/rfcs/blob/master/text/3697-declarative-attribute-macros.md#drawbacks
https://github.com/rust-lang/rfcs/blob/master/text/3697-declarative-attribute-macros.md#drawbacks

Kernel Development Constraints

Understanding why these improvements are crucial requires grasping the unique constraints of kernel development:

1

2

3

Dependencies
Every line of dependency code increases

attack surface and requires security
review. 45,000 lines for basic macros is

unacceptable.

Build Times
Faster build time depending on how you
build the kernel

Separate Crates
For small kernel modules, maintaining
separate macro crates creates significant
overhead in build, review, and
maintenance.

Declarative Solution: Kernel module! Macro

Here's how we could reimplement the kernel's module! macro using declarative attributes:

macro_rules! module {
 attr(
 name = $name:literal,

 author = $author:literal,
 license = $license:literal
) (
 struct $type:ident;
) => {
 struct $type;

 #[no_mangle]
 pub extern "C" fn init_module() -> i32 {
 printk!("Loading module: {}\n", $name);
 <$type as $crate::Module>::init()

 }

 #[no_mangle]
 pub extern "C" fn cleanup_module() {
 printk!("Unloading module: {}\n", $name);

 <$type as $crate::Module>::exit()
 }

 const MODULE_LICENSE: &[u8] = $license.as_bytes();
 const MODULE_AUTHOR: &[u8] = $author.as_bytes();
 };

}

#[module(name = "DeclarativeModule", author = "Vincenzo Palazzo", license = "MIT")]
struct NewModule;

fn main() {}

Dramatic Performance Improvements

0
syn Dependency

Eliminates 25,000 lines of
parsing code

0
quote Dependency

Removes 5,000 lines of code
generation

0
proc-macro2

Saves 15,000 lines of token
manipulation

??%
Build Time Reduction

Clean build times for modules
using proc macros

More importantly, incremental builds return to sub-second performance. Change your module code and you're back to the rapid iteration kernel
developers expect.

Community Impact

The benefits extend beyond technical improvements to community acceptance:

Conservative by Nature
The kernel community naturally resists
dependencies and complexity. Simple,
self-contained macros remove major
objections to Rust adoption.

Renewed Interest
Maintainers previously skeptical are
taking a second look. Networking,
filesystem, and driver subsystems are
reconsidering Rust.

Production Ready
These improvements help make Rust for
Linux feel more production-ready for
broader kernel usage, with fewer
limitations

Call to Action: How You Can Help
01

Test These Features
They're in nightly Rust right now. Enable feature flags, convert
procedural macros, find edge cases, report results.

02

Provide Feedback
The Rust team needs to know what patterns are common in kernel
code, what syntax is awkward, what error messages confuse.

03

Document Experiences
Write blog posts about conversions, share build time improvements,
show concrete examples of workflow benefits.

04

Help with Adoption
Create migration guides, update documentation, teach kernel
developers effective usage patterns.

Getting Started Today

You can begin experimenting with these features immediately:

#![feature(macro_attr)]
#![feature(macro_derive)]

// Now you can write declarative attribute and derive macros

Where to Contribute
File issues on the Rust repository

Participate in discussions on Zulip

Engage in internals forum conversations

Test real-world conversion scenarios

Think Bigger
What other pain points in kernel development could be
addressed? What patterns do we use repeatedly? How can
we make Rust not just possible but pleasant for kernel
development?

Thank You!
Questions & Discussion

Contact Information:
Vincenzo Palazzo

vincenzopalazzodev@gmail.com

Referenced RFCs:
RFC 3714: Future Fragment Fields Syntax

Declarative Attribute Macros RFC

Your Call to Action:
Try these powerful new features on nightly Rust today!

Enable #![feature(macro_attr)] and #![feature(macro_derive)] in your projects to explore declarative attribute and derive macros.

mailto:vincenzopalazzodev@gmail.com
https://github.com/rust-lang/rfcs/pull/3714
https://github.com/rust-lang/rfcs/blob/master/text/3697-declarative-attribute-macros.md#drawbacks

